Astragalus Granule Prevents Ca2+ Current Remodeling in Heart Failure by the Downregulation of CaMKII

نویسندگان

  • Sinai Li
  • Yibing Nong
  • Qun Gao
  • Jing Liu
  • Yan Li
  • Xiaoyun Cui
  • Jie Wan
  • Jinjin Lu
  • Mingjie Sun
  • Qian Wu
  • Xiaolu Shi
  • Haifeng Cui
  • Weihong Liu
  • Mingxue Zhou
  • Lina Li
  • Qian Lin
چکیده

BACKGROUND Astragalus was broadly used for treating heart failure (HF) and arrhythmias in East Asia for thousands of years. Astragalus granule (AG), extracted from Astragalus, shows beneficial effect on the treatment of HF in clinical research. We hypothesized that administration of AG prevents the remodeling of L-type Ca2+ current (ICa-L) in HF mice by the downregulation of Ca2+/calmodulin-dependent protein kinase II (CaMKII). METHODS HF mice were induced by thoracic aortic constriction (TAC). After 4 weeks of AG treatment, cardiac function and QT interval were evaluated. Single cardiac ventricular myocyte was then isolated and whole-cell patch clamp was used to record action potential (AP) and ICa-L. The expressions of L-type calcium channel alpha 1C subunit (Cav1.2), CaMKII, and phosphorylated protein kinase A (p-PKA) were examined by western blot. RESULTS The failing heart manifested distinct electrical remodeling including prolonged repolarization time and altered ICa-L kinetics. AG treatment attenuated this electrical remodeling, supported by AG-related shortened repolarization time, decreased peak ICa-L, accelerated ICa-L inactivation, and positive frequency-dependent ICa-L facilitation. In addition, AG treatment suppressed the overexpression of CaMKII, but not p-PKA, in the failing heart. CONCLUSION AG treatment protected the failing heart against electrical remodeling and ICa-L remodeling by downregulating CaMKII.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Kv4.3 expression reverses ICa remodeling in ventricular myocytes of heart failure

Background Ca2+/calmodulin-dependent protein kinase II (CaMKII)-dependent L-type calcium channel (LTCC) current (ICa) remodeling is an important contributor to the disruption of calcium homeostasis in heart failure (HF). We have reported that Kv4.3 proteins play an important role in delicate regulation of the membrane-associated CaMKII activity in ventricular myocytes. Here, we investigated the...

متن کامل

CaMKII: The molecular villain that aggravates cardiovascular disease

Pathological remodeling of the myocardium is an integral part of the events that lead to heart failure (HF), which involves altered gene expression, disturbed signaling pathways and altered Ca2+ homeostasis and the players involved in this process. Of particular interest is the chronic activation of Ca2+/calmodulin-dependent protein kinase II (CaMKII) isoforms in heart, which further aggravate ...

متن کامل

Role of CaMKII in CaMKII/[Na+]i/[Ca2+]i Feedback in Myocardial Ischemia and Reperfusion Injury: A Simulation Study

Citation: Yu J, Zhang M, Qi J. Role of CaMKII in CaMKII/[Na+]i/[Ca2+]i Feedback in Myocardial Ischemia and Reperfusion Injury: A Simulation Study. Interv Cardiol J 2015, 2:1. Myocardial ischemia and reperfusion injury (MIRI) is a serious complication after percutaneous coronary intervention, which leads to heart failure, increased infarction size, and severe arrhythmias [1,2]. Various signaling...

متن کامل

Mechanisms underlying rate-dependent remodeling of transient outward potassium current in canine ventricular myocytes.

Transient outward K+ current (I to) downregulation following sustained tachycardia in vivo is usually attributed to tachycardiomyopathy. This study assessed potential direct rate regulation of cardiac I(to) and underlying mechanisms. Cultured adult canine left ventricular cardiomyocytes (37 degrees C) were paced continuously at 1 or 3 Hz for 24 hours. I to was recorded with whole-cell patch cla...

متن کامل

Ca2+/calmodulin-dependent kinase II-dependent regulation of atrial myocyte late Na+ current, Ca2+ cycling, and excitability: a mathematical modeling study.

Atrial fibrillation (AF) affects more than three million people per year in the United States and is associated with high morbidity and mortality. Both electrical and structural remodeling contribute to AF, but the molecular pathways underlying AF pathogenesis are not well understood. Recently, a role for Ca2+/calmodulin-dependent protein kinase II (CaMKII) in the regulation of persistent "late...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 2017  شماره 

صفحات  -

تاریخ انتشار 2017